XSEDE Science Successes

« Back

Supercomputing Black Hole Jets

8-26-2016

Black holes make one of the great mysteries in physics. You might know that black holes are so massive that nothing, not even light, can escape once it gets close enough.
 
The great physics mystery is that something is shooting out of some black holes at close to the speed of light. No one knows how these jets form. Supercomputer simulations of black hole jets are starting to shed light on them.
 
To get a better picture of what's happening, imagine gases, dust, and debris from stars spiraling into a black hole. They form a disc around it. Coming out the top and bottom of the disc are jets - one made of electrons and protons and the other of electrons and positrons - the antimatter twin brother of electrons.
 
On the podcast host Jorge Salazar talks more about black hole jets with Ken-Ichi Nishikawa, a principal research scientist at The Center for Space Plasma and Aeronomic Research at the University of Alabama in Huntsville. Dr. Nishikawa's team been awarded XSEDE allocations on several supercomputers, including time on Maverick, Ranch, and Stampede at the Texas Advanced Computing Center; Oasis and Gordon at the San Diego Supercomputing Center; and Nautilus at the National Institute for Computational Sciences. His simulations study how black hole jets interact with the plasma environment that surrounds them.
 
Nishikawa co-authored a study published April of 2016 in the Astrophysical Journal. The study simulations showed for the first time structural differences in one jet compared to the other. He's interviewed by podcast host Jorge Salazar.